# *Clary Power Technology* The **E32 Series** provides three outputs including 24V/5A, 12V/10A and 5V/25A from 18~36V or 36~75V input ranges with first-in-industry Hex-Brick metal package that operates at -60°C~+130°C temperature range. The efficient converter core is designed with patented "Buck-Reset Forward" topology, which cooperates with special designed "Partial-Resonant-Synchronous-Rectifier" stage at 500kHz switching frequency for efficiently delivering more power to achieve 94% of conversion efficiency and 230W/in³ power density. A proprietary ultra-fast current limiting circuit is also embedded in the E32 series to eliminate the long existing technical challenge of "Short-Circuit-Current-Runaway", which is a destructive high output current driven by the minimum output voltage in proportion with the propagation delay flowing through the short circuit loop or the low-impedance non-Ohmic loads. The propagation delay of the E32 series with ultra-fast current limiting can be as short as 60nS, effectively shifting the current limit set point higher than that of conventional converters without reliability impact, and makes it even more suitable for powering the non-Ohmic loads. For providing higher power and improving the system reliability, the E32 Series utilizes a proprietary wide-band "Droop Current Sharing" control circuit, which allows directly connecting the outputs of modules without a noise sensitive current share bus. The system built by paralleling multiple E32 modules is capable to respond full scale step load within 20µS without evidently overshot and ringing, which can trigger the OCP in the power system employed with a low bandwidth current control loop for balancing the modules. Not only focusing on the conversion performances, the E32 Series is also designed with higher environmental resistances. All the power semiconductor chips are attached onto the inner surface of the low profile metallic case to spread heat to the outer surface homogeneously, and further result in lower thermal resistance with forced-air cooling. The E32 modules can be double-sides attached to external cooling means by using two screws, which provide sufficient mechanical strength for installing E32 module on high temperature and dusty environment with harsh vibration. The vacuum potted high thermal conductivity silicone helps with heat transfer and maintains hydrostatic pressure balance in the high strength metallic case to withstand pressure range from 1mBar to 100Bar. All the special design efforts embedded in this product effectively simplify the system power design of deep water probes, high altitude instruments and other equipments that the conventional module cannot be used. #### MODEL NUMBER SYSTEM | E32 | 24 | 120 | a | • | XX | |-------------|------------------------------------------|-------------------------|----------------------------|---|----------------------------| | Series Name | Input Voltage | Output Voltage | Enable Logic | | Setting | | E32 | <b>24</b> :18V~36V<br><b>48</b> :36V~75V | 120= 12.0V<br>050= 5.0V | P: Positive<br>N: Negative | - | For customer function only | The selected option code for the "a" section in the model number determines what enable logic will be applied in production. For example, the E3224120N-10 module is configured to has negative enable logic. ### MODEL LIST (Contact factory for special input / output) # Preliminary Data Sheet | Model Number | Maximum | Input | Maximum ( | Output | Efficiency | Model Number | Maximum | Input | Maximum ( | Output | Efficiency | |--------------|---------|-------|-----------|--------|------------|--------------|---------|-------|-----------|--------|------------| | E3224050N-25 | 18V-36V | 142W | 5.0V/25A | 125W | 91.0% | E3248050N-25 | 36V-75V | 140W | 5.0V/25A | 125W | 92.0% | | E3224120N-10 | 18V-36V | 134W | 12V/10A | 120W | 93.0% | E3248120N-10 | 36V-75V | 132W | 12V/10A | 120W | 94.0% | | E3224240N-05 | 18V-36V | 135W | 24V/5A | 120W | 92.0% | E3248240N-05 | 36V-75V | 134W | 24V/5A | 120W | 93.0% | # COMMON PARAMETERS | Absolute Maximum Ratir | ngs | | | |------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|--| | Temperature | Operation<br>Storage | -60°C to +130°C<br>-60°C to +155°C | | | Input Voltage Range | Operation: 24V Models 48V Models Transient (100mS): 24V Models 48V Models | -0.5V to +40Vdc<br>-0.5V to +80Vdc<br>50V Maximum<br>100V Maximum | | | Isolation Voltage | Input to Output Input to Case Output to Case | 2.0KV Minimum<br>1.0KV Minimum<br>1.0KV Minimum | | | Remote Control | | -0.5V to +12Vdc | | | General | | | |---------|------------------------------------|-----------------------------------------------------| | MTBF | Bellcore<br>TR-332 issue 6 | 4.80×10 <sup>6</sup> hrs @GB/25°C<br>(E3248050a-25) | | OTP | T <sub>AVG</sub> or T <sub>C</sub> | 130°C ±5°C for standard setting | | Weight | | 16g | | Control | | | |-------------------------------------|-------------------------|-------------------------------| | Remote Control | Logic High<br>Logic Low | +3.0V to +6.5V<br>0V to +1.0V | | Input Current of Remote Control Pin | | -0.5mA ~ +1.5mA | | Input | | | |---------------------------|--------------------------|------------------------------------------| | Operation Voltage Range | 24V Models<br>48V Models | +18V to +36Vdc<br>+36V to +75Vdc | | Power ON Voltage Ranges | 24V Models<br>48V Models | +17V to +18Vdc<br>+34V to +36Vdc | | Power OFF Voltage Ranges | 24V Models<br>48V Models | +15.6V to +16.6Vdc<br>+31.2V to +33.2Vdc | | Off State Input Current | V <sub>NOM</sub> | 6mA Max | | Latch-State Input Current | V <sub>NOM</sub> | 8mA Max | | Input Capacitance | 24V Models<br>48V Models | 20.0uF Max<br>14.0uF Max | | Output Limitation | ons | | | | | |-------------------|--------------------------------|-----------------------------------|--------------------------------|---------------------------------|------| | Part Number | Capacitive Load C <sub>E</sub> | Pre-biased Voltage V <sub>B</sub> | Reverse Current I <sub>B</sub> | Short Circuit Output Current Is | Note | | E3224050a-25 | <10000uF@200mΩ Load | <4.75V | <100mA@V <sub>B</sub> | <50A @ 2mΩ Load | | | E3224120a-10 | <1000uF@1200mΩ Load | <11.4V | <100mA@V <sub>B</sub> | <25A @ 2mΩ Load | | | E3224240a-05 | <330uF@4800mΩ Load | <22.8V | <100mA@V <sub>B</sub> | <10A @ 2mΩ Load | | | E3248050a-25 | <10000uF@200mΩ Load | <4.75V | <100mA@V <sub>B</sub> | <50A @ 2mΩ Load | | | E3248120a-10 | <1000uF@1200mΩ Load | <11.4V | <100mA@V <sub>B</sub> | <25A @ 2mΩ Load | | | E3248240a-05 | <330uF@4800mΩ Load | <22.8V | <100mA@V <sub>B</sub> | <10A @ 2mΩ Load | | ### Model Number: E3224050a-25 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 450KHz | | Input/Output | | | |--------------------------------|-----------------------------------|-------------------------| | Reflected Input Ripple Current | L <sub>EXT</sub> = 10uH | 20mA rms/60mAp-p | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>0</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | #### Model Number: E3224050a-25 #### **DERATING CURVES** #### VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor R<sub>-S</sub> between the -S pin and the negative node of the voltage on the load can be regulated. The values of R<sub>-S</sub> for eliminating different V<sub>-BUS</sub> and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting $I_O$ = $I_{RATED}$ and $V_O$ = $V_{RATED}$ . Precision resistor with less than 1% of tolerance is recommended for R<sub>-S</sub>. $$R_{-S} = \frac{\left(5 \, V_{-BUS} + \frac{0.05 \, I_{O}}{I_{RATED}}\right) V_{RATED}}{V_{O} + V_{-BUS} + \left(\frac{I_{O}}{60 \, I_{RATED}} - 1\right) V_{RATED}} - 3$$ ### TRIM AND TRIM TABLE The output of the E3224050a-25 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | | - | | | | | - | - | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|--|---|---|---|---|---| | R <sub>U</sub> (KΩ) | 153.2 | 76.59 | 51.06 | 38.29 | 30.63 | 25.53 | 21.88 | 19.15 | 17.02 | 15.32 | - | - | | - | - | - | - | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | | | | | - | - | | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. ### Model Number: E3224120a-10 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 480KHz | | Output | | | |--------------------------------|-----------------------------------|-------------------------| | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>o</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | | Start-Up Delay Time | V <sub>NOM</sub> , Full Load | 20mS/250mS | #### Model Number: E3224120a-10 #### **DERATING CURVES** #### VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor R<sub>-S</sub> between the -S pin and the negative node of the voltage on the load can be regulated. The values of R<sub>-S</sub> for eliminating different V<sub>-BUS</sub> and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting I<sub>O</sub>= I<sub>RATED</sub> and V<sub>O</sub>= V<sub>RATED</sub>. Precision resistor with less than 1% of tolerance is recommended for R<sub>-S</sub>. $$R_{-S} = \frac{(5 V_{-BUS} + \frac{0.05 I_{O}}{I_{RATED}}) V_{RATED}}{V_{O} + V_{-BUS} + (\frac{I_{O}}{60 I_{RATED}} - 1) V_{RATED}} - 3$$ #### TRIM AND TRIM TABLE The output of the E3224120a-10 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | - | - | - | - | - | - | - | - | - | - | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---| | R <sub>υ</sub> (KΩ) | 324.2 | 162.1 | 108.1 | 81.04 | 64.83 | 54.03 | 46.31 | 40.52 | 36.02 | 32.42 | | - | - | | - | - | | - | - | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | , | | | | | | | | | , | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | | - | - | | | - | | - | | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. ### Model Number: E3224240a-05 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 480KHz | | Output | | | |--------------------------------|-----------------------------------|-------------------------| | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>o</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | | Start-Up Delay Time | V <sub>NOM</sub> , Full Load | 20mS/250mS | #### Model Number: E3224240a-05 #### **DERATING CURVES** ## VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor $R_{-S}$ between the -S pin and the negative node of the voltage on the load can be regulated. The values of $R_{-S}$ for eliminating different $V_{-BUS}$ and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting $I_O=I_{RATED}$ and $V_O=V_{RATED}$ . Precision resistor with less than 1% of tolerance is recommended for $R_{-S}$ . $$R_{-S} = \frac{(5 V_{-BUS} + \frac{0.05 I_{O}}{I_{RATED}}) V_{RATED}}{V_{O} + V_{-BUS} + (\frac{I_{O}}{60 I_{RATED}} - 1) V_{RATED}} - 3$$ #### TRIM AND TRIM TABLE The output of the E3224240a-05 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | - | - | - | - | - | - | - | - | - | - | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---| | R <sub>υ</sub> (KΩ) | 645.1 | 322.5 | 215.0 | 161.3 | 129.0 | 107.5 | 92.15 | 80.63 | 71.67 | 64.51 | | • | | • | | | • | • | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | | - | - | - | - | - | - | - | - | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. ### Model Number: E3248050a-25 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 470KHz | | Output | | | |--------------------------------|-----------------------------------|-------------------------| | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>o</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | | Start-Up Delay Time | V <sub>NOM</sub> , Full Load | 20mS/250mS | #### Model Number: E3248050a-25 #### **DERATING CURVES** #### VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor R<sub>-S</sub> between the -S pin and the negative node of the voltage on the load can be regulated. The values of R<sub>-S</sub> for eliminating different V<sub>-BUS</sub> and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting I<sub>O</sub>= I<sub>RATED</sub> and V<sub>O</sub>= V<sub>RATED</sub>. Precision resistor with less than 1% of tolerance is recommended for R<sub>-S</sub>. <sup>\*</sup> Please consult Glary Power for manipulating load sharing and dynamic performance. $$R_{-S} = \frac{\left(5 \, V_{-BUS} + \frac{0.05 \, I_{O}}{I_{RATED}}\right) V_{RATED}}{V_{O} + V_{-BUS} + \left(\frac{I_{O}}{60 \, I_{BATED}} - 1\right) V_{RATED}} - 3$$ #### TRIM AND TRIM TABLE The output of the E3248050a-25 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | • | - | • | • | • | • | • | • | • | • | |--------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---| | $R_{\text{U}}\left( K\Omega \right)$ | 153.2 | 76.59 | 51.06 | 38.29 | 30.63 | 25.53 | 21.88 | 19.15 | 17.02 | 15.32 | • | • | - | • | • | • | • | • | - | - | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | | - | - | - | - | | - | - | - | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. ### Model Number: E3248120a-10 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 480KHz | | Output | | | |--------------------------------|-----------------------------------|-------------------------| | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>o</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | | Start-Up Delay Time | V <sub>NOM</sub> , Full Load | 20mS/250mS | #### Model Number: E3248120a-10 #### **DERATING CURVES** ### VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor R<sub>-S</sub> between the -S pin and the negative node of the voltage on the load can be regulated. The values of R<sub>-S</sub> for eliminating different V<sub>-BUS</sub> and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting $I_O$ = $I_{RATED}$ and $V_O$ = $V_{RATED}$ . Precision resistor with less than 1% of tolerance is recommended for R<sub>-S</sub>. $$R_{-S} = \frac{\left(5 V_{-BUS} + \frac{0.05 I_{O}}{I_{RATED}}\right) V_{RATED}}{V_{O} + V_{-BUS} + \left(\frac{I_{O}}{60 I_{-MOD}} - 1\right) V_{RATED}} - 3$$ #### TRIM AND TRIM TABLE The output of the E3248120a-10 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | | - | - | - | - | - | - | - | - | - | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---| | R <sub>υ</sub> (KΩ) | 324.2 | 162.1 | 108.1 | 81.04 | 64.83 | 54.03 | 46.31 | 40.52 | 36.02 | 32.42 | | • | | | | | • | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | - | - | - | - | - | - | - | - | - | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. ### Model Number: E3248240a-05 MODEL PARAMETERS ALL SPECIFICATIONS ARE TYPICAL AT NOMINAL INPUT, FULL LOAD AND 25°C UNLESS OTHERWISE NOTED. | General | | | |-----------------------|---------|----------------------| | Conversion Efficiency | Typical | See efficiency plots | | Switching Frequency | Typical | 480KHz | | Output | | | |--------------------------------|-----------------------------------|-------------------------| | Voltage Accuracy | Typical | ±1.0% | | Line Regulation | Full Input Range | ±0.2% | | Load Regulation | 10%~100% (sensing pins connected) | ±0.2% | | Temperature Drift | -60°C ~+130°C | ±0.03%/°C | | Output Tolerance Band | All Conditions | ±4% | | Ripple & Noise (20MHz) | Peak-Peak (RMS) | 3% (1%) V <sub>o</sub> | | Over Voltage Protection | V <sub>NOM</sub> , 10% Load | 115~130 %V <sub>o</sub> | | Output Current Limits | V <sub>NOM</sub> | 120%~140% | | Voltage Trim | V <sub>NOM</sub> , 10% Load | ±10% | | Input Ripple Rejection (<1KHz) | V <sub>NOM</sub> , Full Load | -50dB | | Step Load (2.5A/µS) | 50%~75% Load | ±6%Vo/500μS | | Start-Up Delay Time | V <sub>NOM</sub> , Full Load | 20mS/250mS | #### Model Number: E3248240a-05 #### **DERATING CURVES** #### VOLTAGE DROP COMPENSATION The resistors $R_{\text{+OUT}}$ and $R_{\text{-OUT}}$ on the right-hand side circuit represent the impedances of the power distribution bus contributing voltage drops $V_{\text{+BUS}}$ and $V_{\text{-BUS}}$ respectively. The voltage drop $V_{\text{+BUS}}$ can be eliminated by connecting the +S to the positive node of the load. The -S pin functions differently as it can disable the droop current sharing, compensate the voltage drop $V_{\text{-BUS}}$ , manipulate the load regulation of droop current sharing function or enhance the step load performance. By connecting a resistor R<sub>-S</sub> between the -S pin and the negative node of the voltage on the load can be regulated. The values of R<sub>-S</sub> for eliminating different V<sub>-BUS</sub> and droop current sharing regulation at full load condition are listed in table below, which can be calculated from the equation right-hand below by leting I<sub>O</sub>= I<sub>RATED</sub> and V<sub>O</sub>= V<sub>RATED</sub>. Precision resistor with less than 1% of tolerance is recommended for R<sub>-S</sub>. $$R_{-S} = \frac{\left(5 \, V_{-BUS} + \frac{0.05 \, I_{O}}{I_{RATED}}\right) V_{RATED}}{V_{O} + V_{-BUS} + \left(\frac{I_{O}}{60 \, I_{PATED}} - 1\right) V_{RATED}} - 3$$ #### TRIM AND TRIM TABLE The output of the E3248240a-05 power module can be adjusted for higher or lower than the rated voltage level by connecting the TRIM pin through a resistor to the pins of -S or +S respectively as shown as on the right hand side. The resistor for trimming output voltage higher or lower are denoted as $R_{\text{U}}$ and $R_{\text{D}}$ , which have different resistances for each different output voltage level. The resistance table for trimming the output voltage with 1% of step are listed as below for reference. | Trim Up | +1% | +2% | +3% | +4% | +5% | +6% | +7% | +8% | +9% | +10% | - | - | - | - | - | | - | - | - | - | |---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---|---|---|---|---|---|---|---|---|---| | R <sub>υ</sub> (KΩ) | 645.1 | 322.5 | 215.0 | 161.3 | 129.0 | 107.5 | 92.15 | 80.63 | 71.67 | 64.51 | | • | • | • | | • | • | • | | • | | | | | | | | | | | | | | | | | | | | | | | | | | | | , | | | | | | | | | | | , | | | | | | | Trim Down | -1% | -2% | -3% | -4% | -5% | -6% | -7% | -8% | -9% | -10% | | | | | | | | | - | - | <sup>\*</sup> Please contact Glary Power if a trim range beyond ±10% is needed. #### DROOP CURRENT SHARING Fig. 1 shows schematic of the droop current sharing connection by using E32 modules. The droop current sharing function of E32 module allows directly connecting outputs of multiple modules in parallel without current sharing bus. The reliable current sharing is achieved not only by minimizing the output voltage error but also the balancing the impedance of distribution bus. On E32 module, the output voltage error between modules determines the output current error constantly as show in Fig. 2. However, as shown in Fig. 3, the ratio of the shared current error for each module is gradually approaching to zero while the total output current increases. Fig. 1. Schematic of droop current sharing The bandwidth of the droop current sharing loop is comparable to that of the voltage loop, which can respond to high current slew rate load transient without high current peak deviation. Fig. 4 shows waveforms of two E32 modules in current sharing responding to a 0A to 20A step load, the maximum current slew rate is 2.5A/µS limited by the used electrical load for testing. The waveform shows that the current error of two paralleled modules in the time period of 0A load is relatively large due to a significantly output voltage error, which has been reduced with a very short of settling time in the time period of the 20A load current. Fig. 2. Current sharing error Fig. 3. Ratio of current sharing error Fig. 4. Step-load response 0A/20A@2.5A/µS #### NOTE: - 1. It is recommended that the input should be protected by fuses or other protection devices. - 2. Specifications are subject to change without notice. - 3. Printed or downloaded datasheets are not subject to Glary document control. - 4. Product labels shown, including safety agency certificates, may vary based on the date of manufacture. For needs of usage beyond the application notes, please contact to Glary headquarter or our regional sales representative office for help. - 5. Information provided in this documentation is for ordering purposes only. - 6. This product is not designed for use in critical life support systems, nuclear control systems or other such applications, which necessitate specific safety and regulatory standards other than the ones listed in this datasheet. 💥 In order to secure effective usage of converter and the validity of Glary's service and warranty coverage, please refer to the application notes for general usage. # MECHANICAL DRAWING #### **Dimensions and Pin Connections** | Designation | Function Description | Pin# | |-------------|----------------------------------------------|------| | -IN | Negative input | 1 | | PC | Primary control: ON/OFF and Synchronization. | 2 | | +IN | Positive input | 3 | | +OUT | Positive output | 4 | | +S | Positive remote sense | 5 | | TRIM | Output voltage adjust | 6 | | -S | Negative remote sense | 7 | | -OUT | Negative output | 8 | Dimensions: mm Tolerances: .x±0.5mm .xx±0.25mm Weight: 16g / Metal enclosed Metallic case: Anode oxide aluminum alloy Mounting inserts: Stainless steel for M2 Maximum torque: 1.0 in-lb (0.1Nm) Pin material: Copper alloy or Brass Pin plating: Golden over Nickel